
PriDynSim: A Simulator for Dynamic Priority
Based I/O Scheduling for Cloud Applications

Nitisha Jain∗, Nikolay Grozev†, J. Lakshmi∗, Rajkumar Buyya†
∗Supercomputer Education and Research Center,

Indian Institute of Science, Bangalore, India
{sercnitisha@ssl.serc.iisc.in, jlakshmi@serc.iisc.in}

†Cloud Computing and Distributed Systems (CLOUDS) Laboratory,
Department of Computing and Information Systems,
The University of Melbourne, Parkville, Australia

{ngrozev@student.unimelb.edu.au, rbuyya@unimelb.edu.au}

Abstract—Cloud computing facilitates flexible on-demand pro-
visioning of IT resources over the Internet. It has proven to
be very advantageous for a wide range of industries in the
emerging markets by allowing them to match the infrastructure
capabilities of their already established competitors. However,
Cloud computing also poses several unique challenges in terms
of resource allocation and scheduling. In particular, I/O bound
applications have been mostly neglected in the research efforts
in the area. Simulation tools play a key role in the evaluation
of new resource management policies by providing an affordable
and replicable testing environment. In this paper, we propose
a novel simulation framework PriDynSim for priority based I/O
policies, which manage the available resources to ensure adequate
performance in the presence of deadline constraints. In a case
study, we demonstrate how PriDynSim can be used to evaluate a
resource management policy, which guarantees Quality of Service
(QoS) for I/O bound applications running in a typical Cloud
environment.

Index Terms—Simulation, I/O policy, priority scheduling, per-
formance QoS.

I. INTRODUCTION

Cloud computing has recently emerged as a disruptive
IT model for renting and using computational resources on
demand. It enables users to flexibly and dynamically manage
IT resources and thus has gained widespread popularity. It
offers on-demand availability and scalability without the cost
of maintenance for businesses, regardless of their size. This
flexibility is especially important for enterprises in the emerg-
ing markets, as it allows them to focus on their core lines
of business, rather than invest in developing and managing
IT infrastructure. If it is adopted timely, Cloud computing can
give such organizations a key competitive advantage over their
competitors.

In order to leverage the full advantages of Cloud computing
environments, there is a need to progressively explore new
architectures and policies to solve the issues associated with
the present Cloud provisioning model. While the area of CPU
resource provisioning and scheduling in clouds has gained
significant interest over the last few years, few works have
investigated I/O resource management policies. One of the
major impediments for the research in the area is the lack

of affordable testing environments. Simulation tools provide
a good alternative to testing in large scale and expensive
testbeds, by providing a controlled environment for hypotheses
evaluation. The availability of cloud performance simulators
like CloudSim [1] has already encouraged the research in
the area of cloud resource management and these are widely
used in both academia and industry. Many organizations in
the emerging market economies can not afford expensive
testbeds and thus simulation environments like CloudSim are
invaluable. They allow such enterprises to quickly evaluate
novel resource management techniques, thus fostering their
innovation and putting them at par with more resourceful
competitors. CloudSim provides a flexible and customizable
platform for the modeling of Cloud data-centers, services,
brokers, virtualized servers as well as network topologies
and also energy-aware computation resources. Unfortunately,
CloudSim lacks proper support and representation of disk
I/O operations and policies for allocation of I/O resources
to concurrent I/O workloads. The advent of a suitable I/O
performance model extending the widely adopted CloudSim
simulator holds the potential to further advance the research
in I/O resource management.

Recently, CloudSim extensions modelling I/O operations
alongside CPU instructions for each job (called ’cloudlet’ in
CloudSim) have been proposed [2]. However, the policies for
provisioning of disk resources in terms of I/O instructions per
second or IOPS for the I/O operations have not been focused
upon, with the default scheduling behavior being fair-sharing
i.e. resources are equally assigned to all the cloudlets that
are contending for disk access at a given time irrespective
of their requirements. In [3], it has been demonstrated that
multiple concurrent I/O applications in a Cloud setup need to
be assigned resources in accordance with their requirements
(in terms of deadlines for completion) to ensure that their
performance is acceptable to the users. Hence, there is a need
for an I/O resource scheduler, which can assign resources
to applications based on their specific characteristics and
requirements.

In this paper, we introduce a generic CloudSim based



simulator named PriDynSim for priority based I/O resource
scheduling. It facilitates the evaluation of policies for dynamic
I/O resource scheduling across co-located heterogeneous ap-
plications. By using PriDynSim, Cloud researchers can eval-
uate I/O resource scheduling algorithms which consider the
requirements of a wide spectrum of I/O applications to guar-
antee their performance Quality of Service (QoS). This could
be done in a well known simulation environment, without
using expensive testbeds. By incorporating the representation
of latencies and deadlines of applications in the simulation en-
vironment, PriDynSim can facilitate future research efforts in
the development of time-constrained scheduling policies which
can be tested and validated using the proposed framework.
More specifically, the key contributions of this paper are:

• A performance model for priority based I/O resource
scheduling;

• Design and implementation of the PriDynSim simulator,
which follows the above model;

• A case study demonstrating the functionality of PriDyn-
Sim for modeling of a priority based I/O policy.

The rest of the paper is organized as follows: Section II
discusses the related work in this domain and section III con-
tains detailed description of the design of proposed PriDynSim
simulator in relation with the CloudSim architecture. Section
IV explains the implementation details of PriDynSim with help
of algorithms. In section V, we discuss a case study undertaken
to validate the functionality of the proposed framework and
show experimental results. Section VI concludes the paper
with a brief discussion of the future directions.

II. RELATED WORK

A number of simulation toolkits are available for Cloud en-
vironments out of which CloudSim is the most closely related
to our work. However, CloudSim lacks support for represen-
tation of deadline driven I/O workloads and the priority based
scheduling policies that are required for such workloads. Pre-
viously, many attempts have been made at extending CloudSim
to add new functionality to it based on different requirements.
For e.g., WorkflowSim [4] introduces support for workflow
simulations and scheduling algorithms, DynamicCloudSim [5]
extends CloudSim to handle heterogeneity of applications and
dynamic changes to the performance, and CloudReports [6]
provides a graphical user interface for simulating techniques
for power optimization in Cloud computing environments.
Others have proposed changes for specific use cases such as
SmartFed [7] for the handling of federated Cloud environments
with multiple providers and CloudMIG [8] which facilitates
the migration of enterprise software systems to the Cloud. Li
et. al. proposed an enhanced platform DartCsim++ [9] that ad-
dresses limitations of CloudSim by supporting the simulation
of network and power models at the same time. None of these
works based on CloudSim have addressed the concerns about
the performance modeling of concurrently executing latency-
sensitive I/O workloads which is a very common scenario in
typical real-life Cloud setups.

Comparing with other Cloud simulators, GreenCloud [10]
and MDCSim [11] focus on energy consumption and power
optimization for multi-tier Cloud data-centers without giving
due consideration to application performance unlike our work.
ICanCloud [12] is a simulation tool comparable in functional-
ity and design to CloudSim which enables simulation on larger
scale spanning multiple machines but it also lacks any support
for I/O operations or priority scheduling policies. To the best
of our knowledge, none of the available simulation platforms
have attempted to design priority based I/O scheduling poli-
cies to address the performance concerns for I/O intensive
workloads in a Cloud environment like PriDynSim.

III. PRIDYNSIM ARCHITECTURE

A. Proposed Extensions

CloudSim was previously extended to support I/O operations
alongside CPU instructions when modeling jobs (assigned
to cloudlets) [2]. The extension was made on three levels -
Host, VM and Cloudlet, where at each level the base entity
was extended to include representation for disks and I/O
operations. In this work, we have proposed a new simula-
tor which further extends the CloudSim framework mainly
at the Cloudlet level to represent the job characteristics in
terms of the deadlines of the jobs, their start times and the
disk IOPS being assigned to them at a given point during
the simulation. We have also designed a default intelligent
resource scheduling policy in PriDynSim for the allocation of
disk resources among the contending cloudlets running on the
same VM by extending the current time-based scheduler. The
PriDynSim scheduler ensures better performance as compared
with the basic fair-sharing policy currently used by CloudSim.
By taking cognizance of the deadlines associated with the
cloudlets, our scheduler calculates the estimated latencies of
completion and assigns suitable priority to the cloudlets with
regard to the assignment of disk IOPS. The cloudlet being
assigned the highest priority will be allocated the desired IOPS
needed to complete its execution within the deadline value,
provided the required IOPS is within the system constraints
i.e. required IOPS is less than the maximum value of IOPS
that can be assigned to any cloudlet on the VM.

To implement this, the main extensions to the existing
framework are listed as follows:

1) HddCloudletEx : The Cloudlet having support for rep-
resenting CPU and I/O operations has been further
extended to include the following fields :

a) Deadline: Represents the time by which the
cloudlet is expected to finish completion.

b) Start Time: The time at which the cloudlet is as-
signed the disk IOPS for executing I/O operations.

c) IOPS: The value of the disk IOPS assigned to the
cloudlet at a given time.

The values of deadline and start time are input from the
Cloud user. The default value of IOPS for a cloudlet is
set to zero until the cloudlet is assigned IOPS as per
system configuration.



DataCollector
Public Class

iosize: long
deadline: double
start_time: long
cloudletList: List<HddCloudletEx>

read_input() : void
assign_deadline() : double

DatacenterBroker
Public Class

vmsList: int
cloudletList: List<HddCloudletEx>

submitVmList() : void
submitCloudletList() : void
processCloudletReturn() : void

PriDynSimScheduler
Public Class

priorityCloudlet: int
priorityIOPS: int

getIOCapacity() : List<double>
getCurrentIOShare() : List<double>

HddCloudletEx
Public Class

IOPS: int
deadline: int
start_time: double

HddCloudletEx()

HddCloudlet
Public Class

cloudletId: int
execStartTime: double
finishTime: double
vmId: int
data: int

HddCloudlet()
getCloudletFinishedSoFar() : long

DatacenterBrokerEx
Public Class

hddCloudletExList: List<hddCloudletEx>

submitHddCloudletExList() : void

HddCloudletScheduler
Public Class

cloudletFinishedList: List<Cloudlet>
cloudletExecList: List<HddCloudletEx>

getCloudletsRunning() : List<HddCloudletEx>
getCPUCapacity() : List<double>
getCurrentCPUShare() : List<double>

1

*

1

*

1

1

Figure 1: PriDynSim Class Diagram

2) PriDynSim Scheduler: The existing time shared sched-
uler HddCloudletScheduler that assigns the disk re-
sources to the cloudlets in a fair and equal fashion has
been replaced by a new scheduler which measures the
requirements of the cloudlets as per their I/O operations
and deadline values, and assigns IOPS to satisfy the
deadlines of the workloads of the cloudlets.

3) DatacenterBrokerEx: This is an extension of the ex-
isting DatacenterBroker entity. A broker in CloudSim
terminology acts on behalf of the user for creation
and destruction of VMs and submission of cloudlets
to the VMs. The extended DatacenterBrokerEx entity
can handle the submission of HddCloudletEx entities
that include representation for I/O operations and their
deadlines.

To illustrate the relationship between the various classes of the
PriDynSim framework, we take the help of a class diagram as
shown in Figure 1. The base HddCloudlet class having support
for I/O data representation is extended to HddCloudletEx as
explained above. A separate DataCollector class is responsible
for reading the input values of iosize and start_time for
the cloudlets from the user. This class also assigns suitable
deadlines to the requests as explained in section V-A. This
information is passed on to the DatacenterBrokerEx class that
is derived from the base class DatacenterBroker and can han-
dle the submission of the list of newly defined HddCloudletEx
instances to the simulation environment for execution. After
submission, the allocation of disk IOPS to the cloudlets is
performed by the PriDynSim scheduler class which in turn is
derived from the base class HddCloudletScheduler. The class
keeps track of the resources assigned to all the cloudlets and
gives suitable priorities to the cloudlets based on their latency
requirements to satisfy their deadlines.

We next discuss the interaction between the various entities
of the PriDynSim framework for a simulation session with
help of an interaction diagram.

B. Functionality

Figure 2 shows the various entities that are part of the
PriDynSim framework and their interactions with each other.
The Session_Manager entity represents a set of jobs or
cloudlets that are read as input from the user to be executed
on CloudSim in parallel. For every cloudlet in the session,
the Data_Collector entity collects the information about the
job such as the number of I/O operations, the deadline and
the start time of the jobs and sends the list of cloudlets to
the DatacenterBrokerEx. The DatacenterBrokerEx assigns the
cloudlets to the VMs and then starts the execution of the jobs
based on their start time as specified by the user.

The CloudSim framework is an event based simulator.
Cloudlet life-cycle actualities like start, completion, and failure
are represented as events in simulation time. Initially, an
event occurs every time a new job is started and at every
event the resources allocated to the cloudlets are assessed
and reassigned based on the requirements. In the proposed
framework, the PriDynSim scheduler consists of two entities
that work in a collaborative manner, the Latency_Estimator
and the IOPS_Manager. At every event, the Latency_Estimator
calculates the estimated time of completion or the latencies
of all the cloudlets according to the number of I/O operations
and the IOPS assigned to the cloudlets. Comparing the latency
values with the deadlines of the respective cloudlets, it finds
out the cloudlets which are estimated to violate their deadlines.
If there are multiple such cloudlets, then the one with the
earliest deadline is chosen as the Priority Cloudlet which is
given the highest disk priority so as to finish it before its
deadline.



Loop till
finish

PRIDYNSIM SCHEDULER

:IOPS_Manager:Latency_Estimator:DataCenter
BrokerEx:Data_Collector:Session_Manager

CloudletFinished()

SendAssignedIOPS()

SendLatencyInfo()

StartCloudlets()

ReturnCloudletList()

SubmitCloudletList()

SendCloudletInfo()

Figure 2: Interaction Diagram

This information is sent to the IOPS_Manager entity which
performs the allocation of disk IOPS to all the cloudlets. It
assigns the disk IOPS desired for completion of the Priority
Cloudlet directly and the remaining cloudlets get an equal
share of the remaining disk IOPS. The time of the next
event is calculated as the time of completion of the Priority
Cloudlet. Also, the information about the IOPS assigned to
the cloudlets is sent back to the Latency_Estimator such that
the calculations can be performed again at the next event. The
number of I/O operations that are remaining for each cloudlet
are recalculated based on the time elapsed and the previous
allocation of IOPS. The entire process is repeated in loop at
every I/O scheduling event until all the cloudlets have finished
their execution.

In this manner, the PriDynSim scheduler dynamically en-
ables differentiated disk IOPS for the cloudlets as per their
deadlines. The Cloudlets having an approaching deadline are
given higher priority and assigned greater share of disk IOPS
compared to other Cloudlets having more lenient deadlines.
In this way, such that the deadlines are not violated and
timely completion is guaranteed for all the jobs. When all the
cloudlets have completed execution, the DatacenterBrokerEx
is informed about the completion of the cloudlet list and the
information about the completion time of the cloudlets is sent
back to the Session_Manager for displaying to the user. The
same functionality is repeated in every simulation session.

IV. PERFORMANCE MODEL AND ALGORITHMS

We now elaborate upon the implementation details of Pri-
DynSim scheduling policy with the help of its algorithmic
representation. The notations used in the algorithm have been
summarized in Table I for easy reference. The number of
cloudlets C running in parallel on a VM are assumed to
be N whereas the total number of cloudlets submitted at
the start of simulation are NTotal. The values of the total
number I/O operations and the start times of the jobs running
on these cloudlets, which are given by the user, are denoted
by IO and ST respectively. Deadlines D dictate the time by
which the cloudlet is required to complete execution. Latency
L is the estimated time in which a cloudlet is expected to
complete its job depending upon the assigned disk IOPS and

the number of IO operations remaining at a given point of
time. The cloudlet chosen as the Priority Cloudlet is denoted
as CPriority and it is assigned disk IOPS represented as
IOPSPriority . Using these notations, the working algorithm
of the PriDynSim scheduler is explained in Algorithm 1.

The algorithm receives the set of NTotal cloudlets, their
start times and the number of I/O operations as inputs and
decides the IOPS to be assigned to the cloudlets to satisfy
the deadlines of all the cloudlets. Initially, when the cloudlets
are first submitted, the Priority cloudlet is not defined, and
thus, the value of the IOPS assigned to the Priority cloudlet
is set to zero. Firstly, the value IOPS assigned to each of the
cloudlets is found out with the help of the IOPS_Manager
module which has been separately explained in Algorithm 2.
This module receives the total number of actively running
cloudlets and the value of the IOPSPriority . When the value
of IOPSPriority is zero, for e.g., during the first iteration of
the main algorithm, the total disk IOPS are simply assigned
equally to all the cloudlets by diving by the N . However, when
IOPSPriority has an non-zero value, this value is subtracted
from the value of IOPSmax and this is divided equally among
all the cloudlets except for the Priority Cloudlet itself. The
set of IOPS values for the cloudlets is returned to the main
algorithm. After having found out the initial values of IOPS
for all the cloudlets, the steps 3 to 24 are repeated in a loop
until all the cloudlets have finished their execution. The latency
for all the cloudlets is then calculated with the help of IOPS
previously estimated and the number of I/O operations for
each cloudlet. In the first iteration IO(i) will be equal to the
total number of IO operations to be executed for the cloudlets.
These latency values are compared with the required deadlines
for the cloudlets to find if any cloudlet is expected to violate
its deadline. If there are multiple such cloudlets, the one with
the earliest approaching deadline is chosen as the Priority
Cloudlet. The value of IOPSPriority is assigned as the desired
IOPS for the Priority Cloudlet to finish within the deadline
shown in Step 14.

Before choosing the Priority Cloudlet, it is ensured that
the value of IOPS that is desired by the cloudlet to finish its
execution within the deadline is attainable as per the system
constraints, that is, the desired IOPS is not greater then the
value of IOPSmax. If such is the case, then this cloudlet is
not assigned as the Priority Cloudlet and given proportional
disk share since it is not possible to satisfy the performance
requirements of the cloudlet on the given system setup. Such
a cloudlet will necessarily miss its deadline and should be
ideally migrated to a different system.

After finding the Priority Cloudlet, all the running cloudlets
are assigned the disk IOPS with help of the IOPS_Manager
module once again. For every cloudlet, if this cloudlet is
the Priority Cloudlet then it is assigned the IOPSPriority

and otherwise, its is assigned an IOPS value by equally
sharing the disk IOPS among all the non-priority cloudlets
as described in Algorithm 2. In the next iteration of the while
loop, which will start at the next event, after the completion
of the Priority Cloudlet, we will again consider the set of



Table I: Terminology for PriDynSim Algorithm

ATTRIBUTE NOTATION DESCRIPTION

Cloudlet C =< C(1), C(2) . . . C(N) >
The cloudlets currently submitted to the simulator, N is the
number of active cloudlets at a given time out of the total

NTotal submitted in the list. .

Deadline D =< D(1), D(2) . . . D(N) >
D(i) is the time by which the job assigned cloudlet C(i) is

required to finish execution (measured in seconds).

Number of IO Operations IO =< IO(1), IO(2) . . . IO(N) >

IO(i) is the number of IO operations remaining to be
completed by job assigned to cloudlet C(i) at a given time.

At the time of submission, IO(i) will represent the total
number of IO operations for the cloudlet.

Start Time ST =< ST(1),ST(2)...ST(N) >
ST(i) is the starting time for the job assigned to cloudlet

C(i).

Disk IOPS IOPS =< IOPS(1), IOPS(2) . . . IOPS(N) >
IOPSi is the current value of disk IOPS assigned to

cloudlet C(i).

Latency L =< L(1), L(2) . . . L(N) >
L(i) is the estimated time that cloudlet C(i) will require to
finish its job based on IOPS allocated to it. (Measured in

seconds).

Priority Cloudlet CPriority

CPriority denotes the cloudlet which has been assigned
the highest priority such that it will be assigned the desired
value of disk IOPS required for the completion of the job

before its deadline.

Priority IOPS IOPSPriority
IOPSPriority is the value of IOPS that must be assigned

to the Priority Cloudlet to satisfy the deadline.

Maximum IOPS IOPSmax

IOPSmax denotes the maximum value of IOPS that can
be assigned to a cloudlet running on the VM. If a cloudlet

requires IOPS greater than this value to meet its deadline, it
should be migrated to different system.

active cloudlets (not including the Priority Cloudlet which
has already finished execution). The latency values will be
recalculated based on the previously assigned IOPS values and
number of I/O operations remaining to be completed at that
time after subtracting the number of I/O operations already
completed in the last iteration. The algorithm will repeat again
and choose another cloudlet to be given highest priority based
on the value of deadlines. This process is repeated until all
the cloudlets complete their execution and the value of active
cloudlets N becomes 0.

The algorithm described in this section is the generic imple-
mentation and users can implement new policies by specifying
different parameters or extending the default classes as per
their specific requirements for prioritizing the applications. In
the next section, we describe a case study to illustrate the
performance of the current PriDynSim scheduling policy.

V. CASE STUDY

In order to validate the functionality of PriDynSim, we
performed a case study by simulation of real-life workloads.
We used the I/O workload traces available at SNIA IOTTA
repository [13]. These are block I/O traces from the servers at
Microsoft Cambridge [14] which serve a variety of enterprise
workloads such as web services, media applications, email etc
and can be considered to be a good representative of typical
Cloud workloads in data centers. The traces consist of files
belonging to different applications having information about
the I/O size and the start time of the requests of the application
in sequence. For this case study, we have divided the traces
into two main categories. In the first category, we choose the
traces of applications that are latency sensitive such as media
or web server, having strict deadlines for the completion times

of their requests for satisfaction of performance requirements.
For the second category, traces of delay tolerant applications
such as long running research applications or logging activities
were chosen. Such applications do not have strict latency
requirements and can be assigned lenient deadlines. For our
experiments, a suitable combination of requests from these two
categories were chosen for simulation on CloudSim framework
such that the setup closely resembled a typical Cloud setup
in real world. Each cloudlet is assigned the requests being
read from a trace file as jobs and multiple such cloudlets
are executed in parallel. The values of the number of I/O
operations and the start time of the job is read from the trace
file and assigned to the cloudlets to be submitted to the broker.
The traces do not contain the deadline values for the requests
and therefore, we have used common techniques widely used
in literature to design a deadline assignment scheme for the
cloudlets. This scheme has been explained in our previous
work [3] and is summarized here for the sake of clarity and
completeness.

A. Deadline Assignment for Jobs

For assigning deadlines to the application requests of the
trace files, we use techniques commonly used in previous liter-
ature [15]–[19]. In an ideal setup, every application running on
a server is expected to get the entire disk IOPS and we denote
the expected time taken by the Makespan of the request. This
is the minimum time required to complete the request as per
the system constraints and it is calculated by using the value
of the maximum IOPS available for the cloudlet on the VM
as follows:

Makespan = IO/(IOPSmax) (1)



Algorithm 1 Priority Scheduler
Require: NTotal, C, Total IO,D, ST
Ensure: IOPS

1: Initialize IOPSPriority as 0
2: for each C(i) in < C(1)...C(N) > do
3: Call IOPS_Manager(N, IOPSPriority)
4: end for
5: while (N >= 0) do
6: for each C(i) in < C(1)...C(N) > do
7: Calculate L(i) = IOPS(i)/IO(i)

8: end for
9: if (exists C(i) s. t. L(i) > D(i)) then

10: Find C(i) where D(i) is minimum
11: if ((IO(i)/D(i))− ST(i)) > IOPSmax then
12: Continue to next C(i)

13: else
14: CPriority = C(i)

15: IOPSPriority = IO(i)/(D(i) − ST(i))
16: end if
17: end if
18: for All C(i) in < C(1)...C(N) > do
19: if C(i) = CPriority then
20: IOPS(i) = IOPSPriority

21: else
22: Call IOPS_Manager(N, IOPSPriority)
23: end if
24: end for
25: end while

Algorithm 2 IOPS Manager
Require: N, IOPSPriority

Ensure: IOPS(i)

1: if (IOPSPriority = 0) then
2: IOPS(i) = IOPSmax/N
3: else
4: IOPS(i) = (IOPSmax − IOPSPriority)/(N − 1)
5: end if
6: return IOPS(i)

But in a Cloud environment, disk IOPS get divided among
multiple applications contending for the resources at the same
time and therefore, the requests may take longer to finish
execution than the Makespan. We introduce a parameter δ to
model the delay tolerance property of an application based
on its characteristics. Based on this parameter, the deadline is
assigned to a request as:

Deadline =Makespan+ (Makespan× δ) (2)

This equation however gives us deadlines that are propor-
tional to the I/O sizes of the requests whereas in a typical
data-center such direct dependency may not be present and
small I/O requests may sometimes take longer to complete due
to system conditions. It is therefore appropriate to introduce

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f M
is

se
d 

De
ad

lin
es

Cloudlet Number

Default Scheduler PriDynSim Scheduler

Figure 3: Comparison of Missed Deadlines for 10 Cloudlets

a factor of randomness in the calculation of deadline values.
This is done with the help of rand function as follows:

Deadline = rand [Makespan, Makespan+(Makespan×δ)]
(3)

In this way, the deadlines for the requests are calculated
and assigned based on the latency characteristics of the
applications. For e.g. a latency sensitive application will be
have smaller values of δ while applications which can tolerate
delays in response time will be assigned higher values of δ.

B. Results

In order to illustrate the functionality of PriDynSim sched-
uler, we compare its performance in terms of the number of
cloudlets satisfying their deadlines as compared with the de-
fault fair-sharing scheduler currently included in the CloudSim
environment. A series of experiments were performed with
varying number and combinations of cloudlets assigned to
applications having different latency characteristics. In the first
set of experiments, a set of 20 cloudlets was simulated to
run in parallel on CloudSim having equal number of latency
sensitive and delay tolerant jobs modeled by the I/O requests
belonging to Media server and Research server respectively.
The deadlines were calculated for the cloudlets based on the
scheme described before, strict deadline values were assigned
to Media server requests since they are interactive and re-
quire short response times. However, the response times for
the delay tolerant Research applications can be higher and
therefore a high value of deadline was assigned to such jobs by
using a large value of δ parameter. The simulation session was
repeated 10 times separately for default and the PriDynSim
scheduler and the total number of times where the response
time was greater than the deadline was measured for the
latency-sensitive cloudlets.

Figure 3 shows the comparison between the two cases, the
cloudlets are numbered and represented by the x-axis while
the y-axis denotes the number of times these cloudlets missed
their deadlines out of the total of 10 sessions. It can be
seen that PriDynSim achieved better results for all cloudlets
as the number of times the deadline was missed is reduced
considerably. This is because, the default scheduler assigns
disk IOPS to all cloudlets on equal sharing basis without taking



0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r o

f M
is

se
d 

De
ad

lin
es

Cloudlet Number

Default Scheduler PriDynSim Scheduler

Figure 4: Comparison of Missed Deadlines for 15 Cloudlets

cognizance of their deadlines, and therefore, the cloudlets
having strict deadlines are likely to miss their deadlines having
received the same disk priority as that of other delay tolerant
cloudlets. However, the PriDynSim scheduler is aware of the
latency requirements of the cloudlets and provides a higher
disk priority with desired value of IOPS to the cloudlets
such that the deadlines are satisfied on the system. There are
however, some cloudlets which will miss their deadlines even
with PriDynSim scheduler, these cloudlets belong to the the
worst case where it is not possible to satisfy the performance
requirements due to system constraints, i.e. the required IOPS
are greater than the maximum value of IOPS achievable for the
system. Such cloudlets will necessarily miss their deadlines
and therefore, they are given lower disk priority such that
the performance of other cloudlets is not compromised at
their expense. There were not more than one or two cloudlets
belonging to this category for many of the sessions and such
cloudlets had a very high value of response time as compared
to their deadline. Therefore, apart from achieving the desired
performance for the latency sensitive cloudlets, the PriDynSim
scheduler also identifies the cloudlets that are a potential
candidate for migration to other systems so as to ensure good
overall system performance.

The simulations were also performed for higher number
of cloudlets to explore the performance of the PriDynSim
scheduler. In the next set of experiments, the number of
cloudlets was increased to 30 with half of them being latency-
sensitive and assigned strict deadlines. Figure 4 shows the
comparison between the number of missed deadlines for the
latency-sensitive cloudlets and that PriDynSim achieves better
performance for all the cloudlets.

Further, in order to quantify the performance of PriDynSim
scheduler, we measured the values of the deviations of the
cloudlets from their deadlines, i.e. the difference between the
values of response times (the time at which the cloudlet fin-
ished execution) and the value of deadline assigned to it. These
deviations were measured for both the default and the Pri-
DynSim scheduler for only the cloudlets where the deadlines
were missed, i.e., the deviations are always either positive
or assume zero value in the scenario where the cloudlet is
able to finish earlier or at the deadline value. In Figure 5, we

compare the values of the deviation for the latency sensitive
cloudlets for default and PriDynSim scheduler through a box
plot over the set of ten sessions each. The plots are shown
in sets of 2 corresponding to one cloudlet that are separated
by dotted horizontal lines. Each set compares the deviations
for the cloudlet with the default fair-sharing scheduler and
the PriDynSim scheduler (background shaded). The minimum
value of deviation is always zero for the case when the
cloudlet satisfies the deadline whereas the maximum value
denotes the highest deviation from the deadline. The values of
deviation for the cloudlets identified as the worst case by the
PriDynSim in any session is not taken into account since such
cases are outliers for the experimental setup, the corresponding
deviations for the default scheduler were also omitted for
ensuring correctness and fairness in the comparison. It can
be observed from Figure 5 that PriDynSim scheduler achieves
less deviations for the cloudlets by prioritizing disk access
as compared with the default scheduler which simply assigns
equal IOPS to all. This demonstrates that for the cases where
PriDynSim is unable to satisfy the deadline of the job, it
ensures that the deviation from the required deadline is the
minimum such that the penalties for the delay in response
times, if any, is minimized.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel CloudSim based
simulator PriDynSim which can be used to explore policies for
dynamic allocation of disk resources to I/O bound applications.
The PriDynSim scheduler gives prioritized disk access to the
jobs after identifying them as latency-sensitive. Experimental
evaluation has shown the performance benefits of this policy
through the achievement of guaranteed application perfor-
mance for a wide variety of typical Cloud workloads modeled
by real world I/O traces. PriDynSim is a generic simulator
which can be used as a testbed by future researchers for the
evaluation of their own specific scheduling policies. As future
work, we plan to extend this policy to work at the data-center
level where the allocation of cloudlets or job to a VM can be
decided based on the application requirements such that the
overall efficacy of the resource allocation can be optimized for
Cloud data-center.



0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

De
vi

at
io

ns
 fr

om
 th

e 
De

ad
lin

es
 in

 se
co

nd
s

Cloudlet Numbers

Figure 5: Comparison of Deviations from deadlines

ACKNOWLEDGEMENTS

We thank Rodrigo Calheiros, Amir Vahid Dastjerdi, Yaser
Mansouri, and Chenhao Qu for their comments on improving
this work. This work is partially supported by the Melbourne-
Chindia Cloud Computing (MC3) Research Network.

REFERENCES

[1] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and Experience, vol. 41, no. 1, pp. 23–50, 2011.

[2] N. Grozev and R. Buyya, “Performance modelling and simulation of
three-tier applications in cloud and multi-cloud environments,” The
Computer Journal, vol. 58, no. 1, pp. 1–22, 2015.

[3] N. Jain and J. Lakshmi, “PriDyn: Enabling Differentiated I/O Services
in Cloud using Dynamic Priorities,” IEEE Transactions on Services
Computing, vol. PP, no. 99, pp. 1–1, 2014.

[4] W. Chen and E. Deelman, “Workflowsim: A toolkit for simulating
scientific workflows in distributed environments,” in Proceedings of the
2012 IEEE 8th International Conference on E-Science (e-Science 2012),
pp. 1–8, IEEE, 2012.

[5] M. Bux and U. Leser, “DynamicCloudsim: Simulating heterogeneity
in computational clouds,” in Proceedings of the 2nd ACM SIGMOD
Workshop on Scalable Workflow Execution Engines and Technologies,
p. 1, ACM, 2013.

[6] T. Teixeira SÃ¡, R. N. Calheiros, and D. G. Gomes, “CloudReports:
An Extensible Simulation Tool for Energy-Aware Cloud Computing
Environments,” in Cloud Computing (Z. Mahmood, ed.), Computer
Communications and Networks, pp. 127–142, Springer International
Publishing, 2014.

[7] G. F. Anastasi, E. Carlini, and P. Dazzi, “Smart cloud federation
simulations with cloudsim,” in Proceedings of the First ACM Workshop
on Optimization Techniques for Resources Management in Clouds,
ORMaCloud ’13, (New York, NY, USA), pp. 9–16, ACM, 2013.

[8] S. Frey and W. Hasselbring, “Model-based migration of legacy software
systems to scalable and resource-efficient cloud-based applications: The
cloudmig approach,” in Proceedings of the 1st International Conference
on Cloud Computing, GRIDs, and Virtualization, 2010.

[9] X. Li, X. Jiang, K. Ye, and P. Huang, “DartCSim+: Enhanced CloudSim
with the Power and Network Models Integrated,” in Proceedings of
the 2013 IEEE Sixth International Conference on Cloud Computing
(CLOUD 2013), pp. 644–651, June 2013.

[10] D. Kliazovich, P. Bouvry, and S. Khan, “GreenCloud: a packet-level
simulator of energy-aware cloud computing data centers,” The Journal
of Supercomputing, vol. 62, no. 3, pp. 1263–1283, 2012.

[11] S.-H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. Das, “MDCSim: A
multi-tier data center simulation, platform,” in Proceedings of the IEEE
International Conference on Cluster Computing and Workshops, 2009.
(CLUSTER ’09), pp. 1–9, Aug 2009.

[12] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G. Castañé,
J. Carretero, and I. M. Llorente, “iCanCloud: A Flexible and Scalable
Cloud Infrastructure Simulator,” Journal of Grid Computing, vol. 10,
pp. 185–209, Mar. 2012.

[13] http://iotta.snia.org/. [Online], last accesed: 2014-12-15.
[14] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:

Practical power management for enterprise storage,” ACM Transactions
on Storage (TOS), vol. 4, no. 3, p. 10, 2008.

[15] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-constrained
workflow scheduling algorithms for Infrastructure as a Service Clouds,”
Future Generation Computer Systems, vol. 29, no. 1, pp. 158–169, 2013.

[16] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost-and
deadline-constrained provisioning for scientific workflow ensembles in
IaaS clouds,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, p. 22, IEEE
Computer Society Press, 2012.

[17] R. N. Calheiros and R. Buyya, “Cost-effective provisioning and schedul-
ing of deadline-constrained applications in hybrid clouds,” in Web
Information Systems Engineering-WISE 2012, pp. 171–184, Springer,
2012.

[18] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove, “Cost-optimal
scheduling in hybrid IaaS clouds for deadline constrained workloads,”
in Proceedings of the 2010 IEEE 3rd International Conference on Cloud
Computing (CLOUD 2010), pp. 228–235, IEEE, 2010.

[19] R. N. Calheiros and R. Buyya, “Meeting deadlines of scientific work-
flows in public clouds with tasks replication,” IEEE Transactions on

Parallel and Distributed Systems, vol. 25, no. 7, pp. 1787–1796, 2014.


